People advance because they have different probabilities in their learning weights and therefore; the intersection of their different models (humans) result in way different ideas that combined together result in more interesting answers and that is why computer models suck since they are all the same person.
In the first decades of the twentieth century, mathematicians and logicians were trying to formalize mathematics. David Hilbert and John von Neumann set down the rules of formalism in the 1920s (as we shall see in the next chapter). Before Hilbert and von Neumann, Alfred North Whitehead and Bertrand Russell demonstrated in their Principia Mathematica that some aspects of human reasoning could be formally described, thus linking this awakened interest in mathematical logic to the ideas of the long-forgotten originator of the field, George Boole. The idea of formal systems was of particular interest, because it appeared to bridge the abstractions of mathematics and the mysteries of human thought.
In Egypt and Babylonia, where systems for measuring land and forecasting the course of the stars originated, only the priests and their chosen craftsmen were privileged to know the esoteric arts of reckoning. During the flowering of Greek civilization into the fifth and sixth centuries B.C., these protosciences were shaped into the mental tools known as axiomatic systems.
Hollerith not only created the ability to keep up with large amounts of data, but created the ability to ask new and more complicated questions about the data.
In an axiomatic system you start with premises that are known to be true, and rules that are known to be valid, in order to produce new statements that are guaranteed to be true. Conclusions can be reached by manipulating symbols according to sets of rules. Euclidean geometry is the classic example of the kind of generally useful tools made possible by formal axiomatic systems.
In the first decades of the twentieth century, mathematicians and logicians were trying to formalize mathematics. David Hilbert and John von Neumann set down the rules of formalism in the 1920s (as we shall see in the next chapter). Before Hilbert and von Neumann, Alfred North Whitehead and Bertrand Russell demonstrated in their Principia Mathematica that some aspects of human reasoning could be formally described, thus linking this awakened interest in mathematical logic to the ideas of the long-forgotten originator of the field, George Boole. The idea of formal systems was of particular interest, because it appeared to bridge the abstractions of mathematics and the mysteries of human thought.
The seed fell on good ground.
Some years later, Hollerith's Tabulating Machine had become an institution known as "International Business Machines," run by a fellow named Thomas Watson, Senior.
Some years later, Hollerith's Tabulating Machine had become an institution known as "International Business Machines," run by a fellow named Thomas Watson, Senior.
The seed fell on good ground.